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introduction - magnetic monopoles

Magnetic Monopoles

• Magnetism in nature historically: Always in dipole form

• Elementary particles with magnetic charge: Magnetic Monopoles
- Predicted by many theories

• Haven’t been observed yet

• Magnetic monopoles appear as quasi-particles - emergent
property of materials due to collective behavior of complex
systems

• Detection and study become possible

• Applications become possible
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geometric frustration

Geometric Frustration

• Antiferromagnetism: Neighboring spins prefer opposite
orientations

• For a given choice of 2 spins, the third can’t be antiparallel to both
→ frustrated spin

• Each corner→ 2 states→ 6 states total with the same energy
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geometric frustration

Geometric Frustration

• The ground state is degenerate→ residual entropy at 0 K

• The system "compromises" to a state of least energy:

• The spins are at 120° angles→ total spin 0
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geometric frustration

Geometric Frustration

• Consider a nearby triangle:

• There are 2 equivalent ways of satisfying the above rule

• By extension, in a crystal we have a huge ground state degenacy
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geometric frustration

Geometric Frustration
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spin ice

Water Ice
• In ice, theO atoms are in the center of a tetrahedron

• AllO atoms develop covalent bonds with 2 closely neighboringH
atoms

• AllO atoms develop weaker bonds with 2 more neighboringH
atoms (hydrogen bonds betweenH2Omolecules)→ Ice Rules

Figure 1: Tetrahedral structure of ice 1
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spin ice

Water Ice

Figure 2: Periodic structure of standard ice 1
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spin ice

Water Ice
• Consider the placement ofH atoms around anO atom in ice

• There are 6 equivalent states for every tetrahedron

• TwoH atoms close (inside) & twoH atoms far (outside)

• Therefore, we have a six-fold degeneracy of the ground state→
residual entropy at 0 K (Pauling, 1935 2)

8



spin ice

Spin Ice
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• Consider a tetrahedral arrangement
with ferromagnetic interactions be-
tween neighboring spins

• The spin at S is frustrated and we have
a two-fold ground state degeneracy.
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spin ice

Spin Ice
• The system compromises to a state where 2 spins point towards

to and 2 spins point away from the center of the tetrahedron
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• Equivalent to the ground state of ice→ spin ice!
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spin ice

Spin Ice

• Ground state degeneracy→ residual entropy

• The crystal structure where this happens is the pyrochlore lattice

• FCC structure with 4 atom tetrahedral basis formed by materials
of the typeA2B2O7

• A,B are usually rare earths or transition metals and they both
form the pyrochlore structure

• Characteristic examples:Dy2Ti2O7 (dysprosium titanate) &
Ho2Ti2O7 (holmium titanate)
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spin ice

Spin Ice

Figure 3: Spin Ice pyrochlore structure 3
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spin ice models

Spin Ice Nearest-Neighbor Spin Ice Model

• NNSIM is the simplest model where we consider ferromagnetic
Heisenberg interactions between neighboring spins:

H = −J
∑
⟨i,j⟩

S⃗i · S⃗j (1)

where J > 0means ferromagnetic interaction

• On the pyrochlore lattice S⃗i · S⃗j = − 1
3σiσj and thus4:

H =
J
3

∑
⟨i,j⟩

σiσj = Jnn
∑
⟨i,j⟩

σiσj (2)

whereσi = ±1→ and Jnn > 0, which is an Ising
antiferromagnetism model!
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spin ice models

Spin Ice Nearest-Neighbor Spin Ice Model

• NNSIM reproduces the ground state degeneracy of spin ice

• However, it is crude, especially forDy2Ti2O7 andHo2Ti2O7
• In reality, the interactions are antiferromagnetic in the

Heisenberg model, i.e. (Jnn < 0). How?

• Dy+3 andHo+3 have a large magnetic moment∼ 10µB
• We have ignored a dipole interaction term→Dipolar Spin Ice

Model (DSIM)
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spin ice models

Spin Ice Dipolar Spin Ice Model

• The new Hamiltonian is4

H = Jnn
∑
⟨i,j⟩

σiσj + Dr3nn
∑
i>j

[
S⃗i · S⃗j
|⃗rij|3

−
3(⃗Si · r⃗ij)(⃗Sj · r⃗ij)

|⃗rij|5

]
(3)

whereD = µ0µ
2

4πr3nn
, rnn the distance between NN and rij the

distance between any two spins

• The second term is the dipole interaction. For NN, this term is
Dnn = 5D

3

• We can define an effective NN energy scale5:

Jeff = Jnn + Dnn (4)
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spin ice models

Spin Ice Dipolar Spin Ice Model

• If Jeff > 0 the effective interaction is ferromagnetic (NNSIM),
even if the actual interaction between nearest neighbors is
antiferromagnetic (Jnn < 0)

• However, further neighbor interactions are important→we
expect the degeneracy to be lifted

• It does happen, but it’s very weak→ quasi-degenerate states

• In reality, there is a unique ground state
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spin ice models

Spin Ice Dipolar Spin Ice Model
• At∼ 0.18mK first order phase change from quasi-degenerate

states, Long range order→ total magnetization 0

Figure 4: Top down projection of the Dipolar Spin Ice Model ground state.
The total magnetization is 05
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magnetic monopoles in spin ice

Summary

• In some materials with the pyrochlore structure there is magnetic
frustration of spins

• The ground state of such crystals obeys the Ice Rules

• The NNSIM is a simple model that gives reasonably good results.
A more accurate model is the Dipolar Spin Ice model

• But where are the monopoles?
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magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model
• Consider each dipole moment to be a monopole-antimonopole

pair (dumbbell)

• All monopoles-antimonopoles are in the center of a tetrahedron:

Figure 5: Dumbbell model: A magnetic dipole moment (spin) can be
viewed as two opposite magnetic charges 4

• A diamond lattice is formed by these magnetically neutral spots
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magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model

• DSIM: Excitation from a quasi-degenerate (Pauling) state→ spin
flip→ Ice Rules are broken

• DM: Same excitation corresponds to swapping a monopole with
an antimonopole

Figure 6: Dumbbell model: Magnetic charge appears as a result of crystal
excitations caused by spin flips4
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magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model

• Excitations cause concentrations of magnetic charge to appear in
neighboring tetrahedra

• Flipping chains of spins→move magnetic charges away from
each other at large distances. The chains of flipped spins are an
analogue of Dirac Strings

• The interaction between monopoles is Coulombic6:

V(rij) =

{
µ0
4π

qiqj
rij

rij ̸= 0

v0qiqj rij = 0
(5)

where the magnetic charge takes values qm = ±µ
ad

, ad the
distance between positions in the diamond lattice
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magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model

• The corresponding Hamiltonian can be written as6

H =
µ0

4π

∑
α<β

QαQβ

rαβ

+
v0
2

∑
α

Q2
α (6)

whereQα the total magnetic charge in a lattice position and v0 is
a constant that reproduces the ferromagnetic coupling of NN

• Are the monopoles unconfined? As the dirac string length grows,
the energy cost must be bound→monopoles move freely in the
crystal

• Ensured by the quasi-degenerate Pauling states

22



magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model

• A closed path of flipped spins (worm) leads to a different
quasi-degenerate crystal state

• Worms can have arbitrary shapes and lengths, due to the
geometry→ infinite number of dirac strings connecting two
monopoles

• Therefore, dirac strings are energetically insignificant→
monopole interaction is purely Coulombic7,8

• Dirac Strings are observable→ no quantization of magnetic
charge

23



magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model

Figure 7: Closed path of flipped spins (worm) 9
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magnetic monopoles in spin ice

Magnetic Monopoles in Spin Ice Dumbbell Model

• Interaction between monopoles is purely Coulombic→ energy
between two monopoles at distance r is6

E(r) = 2
2v0µ2

a2d
+

µ0

4π

(
2µ
ad

)
·
(
− 2µ

ad

)
r

(7)

where the first term is the monopole-antimonopole creation
energy cost and the second term is the magnetic Coulomb
interaction

• For r → ∞ the energy is finite and thus the monopoles are
deconfined
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application

Application: Parallel Computing Spintronics

• Conventional semiconductor electronics are based on the charge
property of electrons

• Spintronics (spin transport electronics) are based on the property
of spin and can be used for non-volatile memory in combination
with conventional systems

• Spintronics are good for intrinsically parallel computation
systems which are very efficient, like Quantum Computers or the
human brain10

• Spin Ice systems are also spin based and fit into the same broad
category with spintronics→ spin ice based parallel computation
systems
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application

Application: Parallel Computing Artificial Spin Ice

• Inspired by natural spin ice, we can make larger scale artificial
spin ice systems

• Artificial Spin Ice consists of tiny ferromagnets on the nm scale,
whose magnetization is fixed on a given direction

• We can arrange these ferromagnets such that magnetic
frustration and magnetic monopoles arise

• We can build logic gates based on the transfer of magnetic charge
in such systems

• Operation close to the Landauer limit, i.e. to the theoretical limit
for maximal efficiency (and thus least energy consumption)11
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application

Application: Parallel Computing Artificial Spin Ice

Figure 8: Artificial Spin Ice: Shakti Lattice 12
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Thank you for your attention!
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